Unit-4

Find these notes by Typing lines as given below in Search...

Q Pharmaceutical inorganic semester wise notes by Pharmaguddu.com

Expectorants

Expectorants are drugs used to help in the removal of sputum from the respiratory tract, or simply put, they are used in the treatment of cough.

- Cough is a protective physiological reflex that helps to clear the respiratory tract.
- Cough can be further divided into two types:
 - 1. Dry Cough (No sputum discharge)
 - 2. Productive Cough (Sputum discharge)

Classification of Expectorants

Expectorants act by two mechanisms:

- Increasing fluidity (or reducing viscosity) of sputum.
- Increasing the volume of sputum.

Based on these mechanisms, expectorants can be classified into two categories: Gudduscom

- 1. Sedative Expectorants
- 2. Stimulant Expectorants

0

1. Sedative Expectorants

- These are stomach irritant expectorants.
- They produce their effect by increasing gastric reflexes.
- They cause sedation (sleep) in patients.
- Therefore, they act by increasing the volume of sputum.

2. Stimulant Expectorants

- They act by stimulating the secretory cells of the respiratory tract directly or indirectly.
- These drugs stimulate secretion, leading to more fluid production in the respiratory tract, which dilutes the sputum and makes it easier to discharge through coughing.
- Hence, these drugs act by increasing the fluidity of sputum (or reducing its viscosity).

Potassium Iodide

- Molecular Formula: KI
- Molecular Weight: 166 g/mol
- Synonyms: Kalium Iodatum

Method of Preparation

When hydrogen iodide is treated with potassium bicarbonate, it results in the formation of potassium iodide.

KHCO3+HI→KI+H2O+CO2

Properties

Guddu.com

- It occurs as colorless or transparent crystals or white granular powder.
- It is odorless.
- It is bitter in taste.
- It is hygroscopic in nature.
- It is soluble in both water and alcohol.

Uses

- It is used as an expectorant.
- It is used as an antifungal agent.
- It is used as an iodine supplement.
- It is also used as a saline diuretic.

Ammonium Chloride

Note: Ammonium chloride properties, uses, and method of preparation are already covered in Acidifiers. check, UNIT-II.

Assay of Ammonium Chloride

Ammonium chloride is assayed by precipitation titration using Volhard's Method (Previously).

Procedure

- 1. An accurately weighed 0.2 g of ammonium chloride is dissolved in 40 mL of water.
- 2. The solution is acidified with 3 mL of nitric acid.
- 3. The solution is shaken vigorously after adding 50 mL of 0.1 N silver nitrate and 5 mL of nitrobenzene.

4. The excess of silver nitrate is titrated with 0.1 N ammonium thiocyanate using 2 mL of ferric ammonium sulfate as an indicator.

NH4CI+AgNO3→NH4NO3+AgCl

Each mL of 0.1N AgNO₃ \approx 0.005349 g of NH₄Cl

Note: The above assay method was previously used. Nowadays, ammonium chloride is assayed using Acid-Base Titration.

Emetics

- Definition: Emetics are drugs that cause vomiting (emesis).
- Mechanism:
 - Vomiting is a forceful expulsion of the stomach's contents via the mouth or sometimes through the nose.
 - Emetics plays a valuable role in the treatment of poisoning.
 - They are also used in the treatment of drug overdose or adverse drug effects.
 - In low doses, emetics are sometimes added to cough preparations to stimulate the flow of respiratory tract secretions.
 - Vomiting is an involuntary process.

Mechanism of Action of Emetics:

- Emetics generally act through two mechanisms:
 - 1. Direct Action: By stimulating the chemoreceptor trigger zone located in the medulla oblongata in the brain.

2. Indirect Action: By causing irritation in the gastrointestinal tract.

Copper Sulphate

- Molecular Formula: CuSO4 · 5H2O
- Molecular Weight: 159.6 g/mol
- Synonyms: Blue Vitriol

Method of Preparation:

• Copper sulphate is prepared by dissolving cupric carbonate in dilute H₂SO₄

 $CuCO_3 + H_2SO_4 \rightarrow CuSO_4 + H_2O + CO_2$

Properties:

- Appears as blue crystalline granules or in powdered form.
- It is odorless.
- It is soluble in water.
- It is insoluble in alcohol.

Assay:

- The assay of copper sulphate is performed by Redox Titration.
- An accurately weighed quantity of CuSO4 is dissolved in water.
- To this solution, excess potassium iodide is added, followed by acetic acid.
- The liberated iodine is titrated with standard sodium thiosulphate solution using starch solution as an indicator.

• The titration continues until the blue color of the solution disappears.

Uses:

- Used in the preparation of emetics.
- Also used as germicides and insecticides.

Sodium Potassium Tartrate

- Molecular Formula: C₄H₄NaKO₆
- Molecular Weight: 210.158
- Synonyms: Rochelle Salt

Preparation:

- First, sodium carbonate is added to a suspension of potassium tartrate.
- The mixture is then heated by boiling and allowed to cool.
- Crystals of sodium potassium tartrate form.

Properties:

- Appears as a white or colorless crystalline powder.
- It is odorless.
- It has a saline taste.
- It is soluble in water.
- It is insoluble in alcohol.

Uses:

- Used as an emetic.
- Also used as a laxative.

• Used in effervescent powders.

Haematinics

- Definition: Haematinics are substances required for the formation of blood and are mainly used in the treatment of anemias.
- Function:
 - These drugs increase the number of red blood cells and the amount of hemoglobin when they are below normal levels.
 - Anemia occurs when the balance between the production and destruction of red blood cells gets disturbed.

Anemia:

- Definition: Anaemia is a state of the body where the concentration of hemoglobin is reduced in the blood.
- Causes:
 - 1. Excessive blood loss
 - 2. Unhealthy RBC formation
 - 3. Increased destruction of RBCs

Types of Anaemia:

- Iron Deficiency Anaemia
- Aplastic Anaemia
- Haemolytic Anaemia
- Sickle Cell Anaemia
- Pernicious Anaemia

Ferrous Sulphate

- Molecular Formula: FeSO4 · 7H2O
- Molecular Weight: 278 g/mol
- Synonyms: Green Vitriol

Method of Preparation:

 When iron is treated with dilute H₂SO₄, iron dissolves and forms ferrous sulphate, releasing hydrogen gas: Fe + H₂SO₄ → FeSO₄ + H₂

Properties:

- Occurs as transparent green crystals or pale bluish-green crystalline powder.
- It is odorless.
- It has a metallic taste.
- It is soluble in water.
- It is insoluble in alcohol.

Assay:

- The assay of ferrous sulphate is performed using Redox Titration.
- Add about 0.76 g of FeSO4 in 100 ml of water.
- Add 0.1 ml of 3-drop H₂SO₄ as an indicator.
- Titrate with 0.1 N KMnO4 standard solution until the purple color disappears.

Uses:

• Used as haematinics.

• Also used as disinfectants.

Poison & Antidote

Poison:

- Definition: Poison is defined as any substance administered in whatever way (by mouth or by injection) that produces illness or can even cause death.
- The diagnosis of poisoning is often difficult.

Classification of Poisoning:

- 1. Intentional Poisoning: A person taking or giving a substance with the intention of causing harm to that person (e.g., suicide, assault).
- 2. Unintentional Poisoning: A person taking or giving a substance without knowing its toxic effect (accidentally).
- 3. Undetermined: When the reason behind poisoning is not determined.

Other Causes:

- Food Poisoning
- Overdose of Drugs
- Cyanide Poisoning

Symptoms of Poisoning:

- Reduced breathing rate
- Vomiting
- Diarrhea

- Dilated pupils
- Decreased heart rate

Cyanide Poisoning

- Occurrence:
 - Cyanide poisoning can occur by accidentally taking cyanide poison.
 - Cyanide poisoning can also occur intentionally as a means to commit suicide.
- Mechanism:
 - Cytochrome Oxidase is an enzyme responsible for electron transfer reactions necessary for cellular respiration.
 - In cyanide poisoning, cyanide binds with the ferric ion of cytochrome oxidase.
 - This binding leads to the stoppage of electron transfer reactions, ultimately inhibiting cellular respiration.
 - If cyanide poisoning is not treated immediately, it can be very harmful and potentially fatal.
- Treatment:
 - Sodium nitrite and sodium thiosulphate injections are administered, one after the other, as antidotes for cyanide poisoning.

Antidotes

- Definition:
 - Antidotes are substances that specifically react with ingested poison to neutralize its effects.

- They are used to neutralize the effects of poison in the body.
- Classification:
 - Antidotes are classified based on their mechanism into three categories:
 - 1. Physiological Antidotes
 - 2. Chemical Antidotes
 - 3. Mechanical Antidotes

Physiological Antidotes:

- Also called Antagonists.
- They produce effects opposite to that of the poison.
- Example: Sodium nitrite.

Chemical Antidotes:

- They act by combining with the poison, changing its chemical structure, or converting it into an inactive or harmless compound.
- Example: Sodium thiosulphate.

Mechanical Antidotes:

- They act by preventing the absorption of poison into the body.
- Example: Activated charcoal.

Sodium Thiosulphate

- Molecular Formula: Na₂S₂O₃·5H₂O
- Molecular Weight: 248.2 g/mol

Guddu:com

• Synonym: Sodium Hyposulphate

Preparation:

• Sodium thiosulphate can be prepared by boiling sodium sulphite with sulfur.

 $Na_2SO_3 + S \rightarrow Na_2S_2O_3$

Properties:

- Occurs as large colorless crystals.
- It is odorless and has an alkaline taste.
- Soluble in water.
- Insoluble in alcohol.

Assay:

- The assay of Na₂S₂O₃ is based upon redox titration:
 - Take about 0.5 g of the sample and dissolve it in 20 ml of water.
 - Titrate it against 0.05 M iodine using starch as an indicator.
 - Continue titration until the blue color of the solution disappears.

Uses:

- It is used in the treatment of cyanide poisoning.
- It is also used to treat skin diseases.

You may find more Notes by Searching any "Topic Name" followed by "by Pharmaguddu.com"

